ECE 488 – Automatic Control

Bode Plot Design

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineeering – Çankaya University

Compulsory Course in Electronic and Communication Engineering Credits (3/0/3)

Course Webpage: http://ECE488.cankaya.edu.tr

Klaus Schmidt ECE 488 – Automatic Control

Reminder

Stability Margins

Bode Plot Design

Lead Compensator

Department

Reminder

Previous Weeks

- LTI system modeling
- Nonlinear modeling and linearization
- Stability
- Steady-state and transient response
- Feedback Control
 - Root locus
 - Nyquist plot
- Bode plot

This week

- Gain and Phase Margin
- Lead-lag compensation

Illustration

Gap 1

Stability Margins: Gain Margin

Assumption

 Open loop transfer function
G_o(s) without poles in the open right half plane

Gain Margin

- Multiplication of G_o with constant K_g leads to instable closed loop
- Phase crossover frequency ω_p such that $\angle G_o(\omega_p) = -\pi$ \rightarrow Gain margin K_g describes degree of stability with respect to gain changes

Klaus Schmidt ECE 488 – Automatic Control

Reminder

Stability Margins

Bode Plot Design

Lead Compensator

Department

Stability Margins: Phase Margin

Illustration Assumption Gap 2 • Open loop transfer function $G_o(s)$ without poles in the open right half plane **Phase Margin** • Multiplication of G_o with $e^{-j\Phi_m}$ (phase shift of Φ_m) leads to instable closed loop • Gain crossover frequency ω_{g} such that $|G_o(\omega_g)| = 1$ \rightarrow Phase margin Φ_m describes degree of stability with respect to phase shift Klaus Schmidt Department ECE 488 - Automatic Control

Stability Margins: Bode Plot

Relation between Nyquist Plot and Bode Plot

- Magnitude plot: distance of Nyquist curve from origin for $s = j\omega$
- Phase plot: phase angle of Nyquist curve for $s = j\omega$
- Gain crossover frequency ω_G : intersection of magnitude plot with 0-dB line
- Phase crossover frequency ω_P : intersection of phase plot with -180°

Stability Condition

- Assumption: $G_o(s)$ has no poles in the ORHP
- Condition: Closed loop is internally stable if
 - phase margin $\Phi_p > 0$
 - phase between $0 < \omega < \omega_G$ is larger than -540°

Klaus Schmidt	Department
ECE 488 – Automatic Control	

Reminder

Stability Margins

Bode Plot Design

Lead Compensator

Stability Margins: Example

		٠				
RO	m	1	n	Ы	or	
110		1		u	<u> </u>	

Stability Margins: Example

Nyquist Plot

Gap 3

Klaus Schmidt ECE 488 – Automatic Control

Reminder

Stability Margins

Bode Plot Design

Lead Compensator

Department

Bode Plot Design: Dominant Complex Pole Pair

Approximated Closed-loop Transfer Function

$$T(s) = rac{K}{1 + 2 \, D \, T \, s + T^2 \, s^2}$$

Performance Parameters

- DC Gain: $K_{DC} = K$ \Rightarrow Determines final value of the unit step response
- Phase margin: $\Phi_m = \arctan(\frac{2D}{\sqrt{-2D^2 + \sqrt{1+4D^4}}})$

 \Rightarrow Determines amplitude of oscillations and relative stability

• Cut-off frequency:
$$\omega_c = \frac{1}{T} \sqrt{1 - 2 D^2 + \sqrt{(1 - 2 D^2)^2 + 1}}$$

 \Rightarrow Frequency, where $|T(j\omega)|_{dB}$ is 3 dB below its maximum value

 \Rightarrow Determines speed of response

Klaus Schmidt ECE 488 – Automatic Control

Reminder

- Attenuation factor 0 < α < 1
- Gain K_{α}

• Pole at
$$s = -\frac{1}{\alpha T}$$

• Tole at $s = -\frac{1}{\alpha T}$ • Zero at $s = -\frac{1}{T}$

Remarks

- Phase increase (lead) up to a maximum value of $sin(\varphi_{\alpha}) = \frac{1-\alpha}{1+\alpha}$
- Frequency of maximum phase lead at $\omega_{\alpha} = \frac{1}{\sqrt{\alpha}T}$
- Magnitude at ω_{α} is $|C(j\omega_{\alpha})| = \frac{1}{\sqrt{\alpha}} > 1$

Klaus Schmidt ECE 488 – Automatic Control Department

 Reshape frequency response curve to give additional phase lead in order to increase the phase margin

Starting Point

- Plant transfer function G(s)
- Lead compensator transfer function $C(s) = K_{\alpha} \frac{1 + T s}{1 + \alpha T s}$
- Desired phase margin Φ_m
- Steady-state error e_{∞}

Task

• Determine the parameters K_{α} , α and T

Klaus Schmidt
ECE 488 – Automatic Contro

Department

Lead Compensator

Department

Gap 6

Klaus Schmidt ECE 488 – Automatic Control

