Reminder	Controllability	Stability	State Feedback Control
	ECE 488 – A	Automatic Contr	ol
_	Controllability and	State Feedback Co	ntrol
	Associate Pro	f. Dr. Klaus Schmidt	:
	Department of Mechatronic	s Engineeering – Çankaya	University
		Electronic and Comm gineering its (3/0/3)	nunication
	Course Webpage: htt	p://ECE488.cankay	a.edu.tr
Klaus Schmidt			Department
ECE 488 – Aut	omatic Control		

Reminder

Controllability

Stability

State Feedback Control

Reminder

Previous Weeks

- Plant modeling
- Properties of transfer functions
- Stability and performance
- Feedback control
- Root locus method
- Nyquist criterion and bode plot
- Lead/lag compensator and PID-controller

This week

- Controllability
- State feedback control

Controllability: Preliminaries	
State-space Model	Example
	Gap 1
$\dot{x}(t) = A x(t) + b u(t)$ $y(t) = c^T x(t) + d_d u(t)$	
Transfer Function	
$G(s) = c_d^T (sI - A)^{-1}b + d$	
Solution of the State Equation	
$x(t) = e^{At}x(0) + \int_0^t e^{A(t- au)}bu(au)d au$	
Klaus Schmidt ECE 488 – Automatic Control	Department

Stability

Reminder

Reminder

Controllability

Controllability

Stability

State Feedback Control

State Feedback Control

Controllability: Definition

Controllability Definition

A linear system is called <u>completely controllable</u> if it is possible for each pair of states x_0, x_1 to find a control input u(t) that moves the system state from x_0 to x_1 in a specified transfer time t_T

Controllability Test by Kalman

A linear system of order n is completely controllable if and only if the controllability matrix

 $\mathcal{C} = \begin{bmatrix} b & A b & \cdots & A^{n-2} b & A^{n-1} b \end{bmatrix}$

has full rank n (n is the order of the state space model)

 \Rightarrow Check the rank of $\mathcal C$ to verify controllability

Reminder	Controllability	Stability	State Feedback Control
Controllability	: Example		
Computation			
			Gap 2
Klaus Schmidt ECE 488 – Automatic Control			Department
Reminder	Controllability	Stability	State Feedback Control
State Feedbac Hautus Test	ck Control: Al	ternative Contro	ollability Test
_		able (uncontrollable) as (does not have) i	-
→ System is con Example	trollable if all eig	envalues are control	lable
			Gap 3
			Gap 3

Stability

Gap 4

Department

Gap 5

State Feedback Control

Stability: State Space Models

Definition

A linear system with the dynamic matrix A is asymptotically stable if all eigenvalues of A lie in the open left half plane

⇒ Stronger condition than BIBO stability: $G(s) = c^T (sI - A)^{-1}b + d$ can be BIBO stable even if A has eigenvalues in the right half plane! **Example**

Klaus Schmidt ECE 488 – Automatic Control

Reminder

Controllability

Stability: Example

Computation

Klaus Schmidt ECE 488 – Automatic Control Department

State Feedback Control: Idea

Given

$$\dot{x}(t) = Ax(t) + bu(t)$$
$$y(t) = c^{T}x(t) + du(t)$$

Goal

• Use feedback of the state vector x to move the eigenvalues of the closed-loop system to desired locations

State Feedback

$$u(t) = k^T x(t) + M r(t)$$

Design Parameters

• Feedback vector k; pre-filter M

Klaus Schmidt ECE 488 – Automatic Control

Reminder

Controllability

Stability

State Feedback Control

Department

State Feedback Control: Block Diagram

Illustration

Gap 6

Practical Fact

• All state variables must be measurable

Reminder	Controllability	Stability	State Feedback Control
State Feed	lback Control: Clos	ed Loop	
Computatio	on		
			Gap 7
State Space	Model	Notation in Close	d Loop
$\dot{x}(t) = (A + $	$\underbrace{b k^{T}}_{\tilde{A}} x(t) + \underbrace{b M}_{\tilde{b}} r(t)$	 Dynamic matri 	x
	\widetilde{A} \widetilde{b}	$ ilde{A} = A + b k^{\mathcal{T}}$	
$y(t) = (c^T + $	$+ \frac{d k^{T}}{\tilde{c}^{T}} x(t) + \underbrace{d M}_{\tilde{d}} r(t)$	• Transfer functi $\tilde{G}(s) = \tilde{c}^T(s)$	
Klaus Schmidt			Department
ECE 488 – Automatic	Control		

Reminder

Controllability

Stability

State Feedback Control

State Feedback Control: Closed Loop

Closed-loop Requirements

- Stability
 - ightarrow All eigenvalues of $ilde{A}$ should lie in the OLHP
- Sufficient performance

 \rightarrow Suitable choice of the closed-loop eigenvalues (for example far away enough from the imaginary axis) using design parameter k

• Zero steady-state error \rightarrow Suitable choice of the design parameter M

Questions

- When is it possible to assign the poles of the closed loop?
- How can we compute the design parameters k and M?

State Feedback Control: Pole Assignment

Choice of the Pole Locations

If a linear system is completely controllable, then the eigenvalues of the closed-loop dynamic matrix $\tilde{A} = A + b k^T$ can be assigned arbitrarily by a suitable choice of k

Stability

Pole Assignment for Complete Controllability

• System order n: Choice of the closed loop characteristic polynomial (for example using desired eigenvalue locations)

$$p(s) = p_0 + p_1 s + \cdots + p_{n-1} s^{n-1} + s^n$$

Stability

 \rightarrow We want that $p(s) = \det(sI - A - bk^T)$

Klaus Schmidt ECE 488 – Automatic Control

Reminder

Reminder

Controllability

State Feedback Control: Pole Assignment

Pole Assignment for Complete Controllability

- Formula of Ackermann: Compute the vector v such that $v^T = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \mathcal{C}^{-1}$
- Compute state feedback vector k using p(s) and v

$$k^{T} = -p_0 v^{T} - p_1 v^{T} A - \cdots - p_{n-1} v^{T} A^{n-1} - p_n v^{T} A^{n}$$

Example

Department

Gap 8

State Feedback Control

Department

Reminder	Controllability	Stability	State Feedback Control
State Feed	dback Control: Exa	ample	
Computatio	on		
			Gap 9
Klaus Schmidt			Department
ECE 488 – Automatic	Control		Department
		<u> </u>	
Reminder	Controllability	Stability	State Feedback Control
State Feed	dback Control: Un	controllable Eig	çenvalues
Hautus Tes	st		
 Find un 	ncontrollable eigenvalue	!S	
All unco	ontrollable eigenvalues	must also appear ir	1 the closed loop

Pole Assignment by Comparison of Coefficients

- Determine the characteristic polynomial of the closed loop for $k^T = \begin{bmatrix} k_1 & k_2 & \cdots & k_n \end{bmatrix} (k_1, \dots, k_n \text{ are free parameters})$
 - $\rightarrow \det(sI A b k^T)$
- Choose a desired closed loop characteristic polynomial p(s) that preserves uncontrollable eigenvalues
 - ightarrow Evaluate det $(sI A b k^T) = p_0 + p_1 s + \cdots p_{n-1} s^{n-1} + p_n s^n$
- Compute the free parameters k_1, k_2, \ldots, k_n by comparison of coefficients

State Feed	lback Control: E>	ample	
Computatio	on		
-			Gap 10
Klaus Schmidt			Department
ECE 488 – Automatic	Control		
Reminder	Controllability	Stability	State Feedback Control
			State Feedback Control
State Feed	lback Control: E>		State Feedback Control
	lback Control: E>		
State Feed	lback Control: E>		State Feedback Control Gap 11
State Feed	lback Control: E>		
State Feed	lback Control: E>		
State Feed	lback Control: E>		
State Feed	lback Control: E>		
State Feed	lback Control: E>		
State Feed	lback Control: E>		
State Feed	lback Control: E>		
State Feed	lback Control: E>		
State Feed	lback Control: E>		
State Feed	Iback Control: E>		

Stability

State Feedback Control

Reminder

Controllability

State Feedback Control: Pre-Filter

Goal

• For unit reference step, we want to reach steady-state output value 1

Solution

• Apply final value theorem to the closed-loop transfer function:

$$1 = \lim_{t \to \infty} y(t) = \lim_{s \to 0} \tilde{G}(s)$$

= $\lim_{s \to 0} ((c^T + d k^T)(sI - A - b k^T)^{-1}b M + d M)$
= $((c^T + d k^T)(-A - b k^T)^{-1}b + d)M$
 $\Rightarrow M = \frac{1}{(c^T + d k^T)(-A - b k^T)^{-1}b + d}$

 \rightarrow Note: eigenvalues of $-A - b k^T$ are non-zero

Klaus Schmidt ECE 488 - Automatic Control

Reminder

Controllability

Stability

State Feedback Control

Department

State Feedback Control: Example

Computation

Gap 12 Klaus Schmidt