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Compulsory Course in Electronic and Communication
Engineering

Credits (3/0/3)

Course Webpage: http://ECE488.cankaya.edu.tr

Klaus Schmidt Department

ECE 488 – Automatic Control

Reminder Controllability Stability State Feedback Control

Reminder

Previous Weeks

Plant modeling

Properties of transfer functions

Stability and performance

Feedback control

Root locus method

Nyquist criterion and bode plot

Lead/lag compensator and PID-controller

This week

Controllability

State feedback control
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Controllability: Preliminaries

State-space Model

ẋ(t) = A x(t) + b u(t)

y(t) = cT x(t) + dd u(t)

Transfer Function

G (s) = cT
d (sI − A)−1b + d

Solution of the State Equation

x(t) = eAtx(0)+

∫ t

0
eA(t−τ)bu(τ)dτ

Example
Gap 1
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Controllability: Definition

Controllability Definition

A linear system is called completely controllable if it is possible for each
pair of states x0, x1 to find a control input u(t) that moves the system

state from x0 to x1 in a specified transfer time tT

Controllability Test by Kalman

A linear system of order n is completely controllable if and only if the
controllability matrix

C =
[
b A b · · · An−2 b An−1 b

]
has full rank n (n is the order of the state space model)

⇒ Check the rank of C to verify controllability
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Controllability: Example

Computation
Gap 2
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State Feedback Control: Alternative Controllability Test

Hautus Test

An eigenvalue λ of A is controllable (uncontrollable) if and only if the
matrix

[
(λI − A) b

]
has (does not have) full rank n

→ System is controllable if all eigenvalues are controllable

Example
Gap 3
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Stability: State Space Models

Definition

A linear system with the dynamic matrix A is asymptotically stable if all
eigenvalues of A lie in the open left half plane

⇒ Stronger condition than BIBO stability: G (s) = cT (sI − A)−1b + d
can be BIBO stable even if A has eigenvalues in the right half plane!
Example

Gap 4
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Stability: Example

Computation
Gap 5
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State Feedback Control: Idea

Given

ẋ(t) = A x(t) + b u(t)

y(t) = cT x(t) + d u(t)

Goal

Use feedback of the state vector x to move the eigenvalues of the
closed-loop system to desired locations

State Feedback

u(t) = kT x(t) + M r(t)

Design Parameters

Feedback vector k ; pre-filter M
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State Feedback Control: Block Diagram

Illustration
Gap 6

Practical Fact

All state variables must be measurable
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State Feedback Control: Closed Loop

Computation
Gap 7

State Space Model

ẋ(t) = (A + b kT )︸ ︷︷ ︸
Ã

x(t) + b M︸︷︷︸
b̃

r(t)

y(t) = (cT + d kT )︸ ︷︷ ︸
c̃T

x(t) + d M︸︷︷︸
d̃

r(t)

Notation in Closed Loop

Dynamic matrix
Ã = A + b kT

Transfer function
G̃ (s) = c̃T (sI − Ã)−1b̃ + d̃
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State Feedback Control: Closed Loop

Closed-loop Requirements

Stability
→ All eigenvalues of Ã should lie in the OLHP

Sufficient performance
→ Suitable choice of the closed-loop eigenvalues (for example far
away enough from the imaginary axis) using design parameter k

Zero steady-state error
→ Suitable choice of the design parameter M

Questions

When is it possible to assign the poles of the closed loop?

How can we compute the design parameters k and M?
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State Feedback Control: Pole Assignment

Choice of the Pole Locations

If a linear system is completely controllable, then the eigenvalues of the
closed-loop dynamic matrix Ã = A + b kT can be assigned arbitrarily by a

suitable choice of k

Pole Assignment for Complete Controllability

System order n: Choice of the closed loop characteristic polynomial
(for example using desired eigenvalue locations)

p(s) = p0 + p1s + · · ·+ pn−1sn−1 + sn

→ We want that p(s) = det(sI − A− b kT )
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State Feedback Control: Pole Assignment

Pole Assignment for Complete Controllability

Formula of Ackermann: Compute the vector v such that
vT =

[
0 0 · · · 0 1

]
C−1

Compute state feedback vector k using p(s) and v

kT = −p0vT − p1vT A− · · · − pn−1vT An−1 − pnvT An

Example
Gap 8
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State Feedback Control: Example

Computation
Gap 9
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State Feedback Control: Uncontrollable Eigenvalues

Hautus Test

Find uncontrollable eigenvalues

All uncontrollable eigenvalues must also appear in the closed loop

Pole Assignment by Comparison of Coefficients

Determine the characteristic polynomial of the closed loop for
kT =

[
k1 k2 · · · kn

]
(k1, . . . , kn are free parameters)

→ det(sI − A− b kT )

Choose a desired closed loop characteristic polynomial p(s) that
preserves uncontrollable eigenvalues

→ Evaluate det(sI − A− b kT ) = p0 + p1s + · · · pn−1sn−1 + pnsn

Compute the free parameters k1, k2, . . . , kn by comparison of
coefficients
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State Feedback Control: Example

Computation
Gap 10
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State Feedback Control: Example

Computation
Gap 11
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State Feedback Control: Pre-Filter

Goal

For unit reference step, we want to reach steady-state output value 1

Solution

Apply final value theorem to the closed-loop transfer function:

1 = lim
t→∞

y(t) = lim
s→0

G̃ (s)

= lim
s→0

(
(cT + d kT )(sI − A− b kT )−1b M + d M

)
=
(
(cT + d kT )(−A− b kT )−1b + d

)
M

⇒ M =
1

(cT + d kT )(−A− b kT )−1b + d

→ Note: eigenvalues of −A− b kT are non-zero
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State Feedback Control: Example

Computation
Gap 12
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