Observability and Separation

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineeering – Çankaya University

Compulsory Course in Electronic and Communication Engineering Credits (3/0/3)

Course Webpage: http://ECE488.cankaya.edu.tr

Klaus Schmidt ECE 488 – Automatic Control

Reminder

Observability

Luenberg Observer

Separation

Department

Reminder

Previous Weeks

- Plant modeling
- Properties of transfer functions
- Stability and performance
- Feedback control
- Root locus method
- Nyquist criterion and bode plot
- Lead/lag compensator and PID-controller
- Controllability and State feedback control

This week

- Observability
- Separation

Gap 1

Department

Observability: Definition

State-space Model

$$\dot{x}(t) = Ax(t) + bu(t)$$
$$y(t) = c^{T}x(t) + du(t)$$

Observability Definition

A linear system is called <u>completely observable</u> if any initial state x(0) at time t = 0 can be uniquely determined from the output signal y(t) and the input signal u(t) in a pre-specified time interval $0 \le t \le t_T$.

Klaus Schmidt ECE 488 – Automatic Control

 Reminder
 Observability
 Luenberg Observer
 Separation

 Observability: Verification
 Observability Test by Kalman
 A linear system of order n is completely observable if and only if the

 $\underline{observability matrix}$ $\mathcal{O} = \begin{bmatrix} c^T \\ c^T A \\ \vdots \\ c^T A^{n-1} \end{bmatrix}$ has full rank n

 Example
 Gap 2

Department

D -			
пе	1111	na	er

Luenberg Observer: Block Diagram

Diagram

	Gap 3
ius Schmidt E 488 – Automatic Control	Departmen

Reminder

Observability

Luenberg Observer

Separation

Luenberg Observer: Idea

State Reconstruction

- Parallel model of the linear system (simulated)
- Comparison of measured and simulated output
- Feedback to compensate error

Parallel Model

$$\dot{\hat{x}}(t) = A \hat{x}(t) + b u(t) + l(\hat{y}(t) - y(t))$$

 $\hat{y}(t) = c^T \hat{x}(t) + d u(t)$

Variables and Parameters

- Simulated state \hat{x}
- Simulated output \hat{y}
- Feedback vector /

Klaus Schmidt

Department

Reminder	Observability	Luenberg Observer	Separation
Luenberg	Observer: Compu	tation	
State Erro	or Computation		
			Gap 4
Result			
	$\dot{e}(t)=\dot{\hat{x}}(t)-\dot{x}$	$(t) = (A + Ic^T)e(t)$	
 Stabili 	ze observer by moving t	the eigenvalues of $A + I c^T$	in the OLHP
• Desire	d characteristic polynor	nial of $A + I c^T$: $p(s)$	
ightarrow We	e want det $(sI - A - Ic^{T})$)= ho(s)	
Klaus Schmidt ECE 488 – Automat	ic Control		Department
Reminder	Observability	Luenberg Observer	Separation
Luenberg	Observer: Exampl	e	
Computat			
			Gap 5

Department

Separation: Combination of State Feedback and Observer

Block Diagram

Gap 6

Klaus Schmidt ECE 488 – Automatic Control

Reminder

Observability

Luenberg Observer

Separation

Department

Separation: Explanation

State Estimation

- Use the estimated state x̂ for state feedback
 ⇒ Controller consists of observer (for state estimation), state feedback (for pole placement) and pre-filter (for steady-state value)
- Separation principle: Closed loop eigenvalues are eigenvalues of observer plus eigenvalues of state feedback

 \Rightarrow We can design state feedback and observer independently