ECE 488 – Automatic Control

State-Space Models – Nonlinear Modeling

Assistant Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineeering – Çankaya University

Compulsory Course in Electronic and Communication Engineering Credits (3/0/3)

Course Webpage: http://ECE488.cankaya.edu.tr

Klaus Schmidt ECE 488 – Automatic Control

Linear State Space Models

Nonlinear System Modeling

Set-Point

Set-point Linearization

Department

Reminder

Previous Topics

- Linear system modeling
- Block diagram representation
- Transfer functions
- Block diagram simplification

This Week

- State space models as alternative/equivalent system representation
- Nonlinear system modeling
- Set-point linearization of nonlinear state space models

Linear State Space Models: Definitions

Previously

• Study of dynamic relation between input (u) and output (y) signals

System State

The state $x(t_0)$ of a dynamic system at time t_0 is the information at time t_0 that is needed together with the input signal u(t) for $t \ge t_0$ to determine the output signal y(t) for $t \ge t_0$

Example

Klaus Schmidt ECE 488 – Automatic Control

Linear State Space Models

Nonlinear System Modeling

odeling

Set-Point

Set-point Linearization

Gap 1

Department

Linear State Space Models: Definitions

State Space Equations

$$\dot{x}(t) = Ax(t) + bu(t) + ow(t)$$
$$y(t) = c^T x(t) + du(t)$$

Signals

- State vector: $x(t) \in \mathbb{R}^n$
- State vector derivative: $\dot{x}(t) \in \mathbb{R}^n$
- Input: $u(t) \in \mathbb{R}$
- Output: $y(t) \in \mathbb{R}$
- Disturbance: $w(t) \in \mathbb{R}$

Constant Matrices and Vectors

- Dynamics matrix: $A \in \mathbb{R}^{n \times n}$
- Input vector: $b \in \mathbb{R}^{n \times 1}$
- Disturbance vector: $o \in \mathbb{R}^{n \times 1}$
- Output vector: $c^T \in \mathbb{R}^{1 \times n}$
- Feed-through: $d \in \mathbb{R}$

Set-Point

Linear State Space Models: RLC-Circuit Example

Equations

Gap 2

Klaus Schmidt ECE 488 – Automatic Control

Linear State Space Models

Nonlinear System Modeling

Set-Point

Set-point Linearization

Department

Linear State Space Models: DC-Motor Example

Equations

Gap 3

Department

ECE 488 – Automatic Control

Linear State Space Models: Relation to Transfer Function
Linear State Space Model Laplace Transformation
$\dot{x} = A \cdot x + b \cdot u + o \cdot w \qquad sX(s) - x(0) = A \cdot X(s) + b \cdot U(s) + o \cdot W(s)$ $y = c^{T} \cdot x + d \cdot u \qquad \qquad Y(s) = c^{T} \cdot X(s) + d \cdot U(s)$ Computation
Gap 4
$\Rightarrow Y(s) = \underbrace{(c^{T}(sI - A)^{-1}b + d)}_{\text{Plant transfer function } G(s)} U(s) + \underbrace{c^{T}(sI - A)^{-1}o}_{\text{Disturbance transfer function } G_{d}(s)}_{\text{Department}}$ Klaus Schmidt ECE 488 – Automatic Control
Linear State Space Models: RLC-Circuit Transfer Function Computation
Gap 5

Linear State Space Models: Relation to Block Diagram

Integrator

First-order Lag

Second-order Lag

State Space Model

- State: x (integrator output)
- State equation: $\dot{x} = u$

State Space Model

- State: x (first-order lag output)
- State equation: $\dot{x} = \frac{1}{T}(K \cdot u x)$

State Space Model

- States: x, \hat{x}
- State equation:

$$\dot{\hat{x}} = \hat{x}$$
$$\dot{\hat{x}} = \frac{1}{T^2} (K \cdot u - x - 2DT\hat{x})$$

Department

ECE 488 - Automatic Control

Linear State Space Models

Nonlinear System Modeling

Set-Point

Set-point Linearization

Linear State Space Models: DC-Motor Example

Computation

Klaus Schmidt ECE 488 – Automatic Control

Department

Gap 6

ECE 488 – Automatic Control

Nonlinear System Modeling: Equations

Computation

Gap 7

Klaus Schmidt ECE 488 – Automatic Control

Department

Nonlinear State Equations: Block Diagram

Example

			Gap 9
Klaus Schmidt			Department
ECE 488 – Automatic Control			Department
Linear State Space Models	Nonlinear System Modeling	Set-Point	Set-point Linearization

Nonlinear System Modeling: Remarks

Synthesis and Analysis Techniques for Nonlinear Systems

- Beyond the scope of this lecture
 - \rightarrow Master-level course ECE 564
- Extensive literature

 \rightarrow Alberto Isidori: "Nonlinear Control Systems", Springer, 1995 (ISBN: 3-54-019916-0)

 \rightarrow Hassan K. Khalil: "Nonlinear Systems", Prentice Hall, 2002 (ISBN: 0-13-067389-7)

Set-point Linearization

- Consider system behavior in the vicinity of a given set-point
 - \rightarrow Assume almost linear behavior close to the set-point
 - \rightarrow Find a linear system model to approximate the nonlinear system

Set-Point: Definition

Set-point Definition

A set point is a stationary (non-changing) state of a system where the system output maintains a constant set-point value y_{SP}

Computation of a Set-point

- Given: *y_{SP}*, *w_{SP}*
- We want to compute *x*_{SP} (constant set-point value of the state) and *u*_{SP} (constant set-point value of the input)
- Computation

$$y_{SP} = h(x_{SP}, u_{SP})$$
$$0 = \dot{x} = f(x_{SP}, u_{SP}, w_{SP})$$

 \Rightarrow Solve for x_{SP} , u_{SP}

Klaus Schmidt ECE 488 – Automatic Control

Linear State Space Models

Nonlinear System Modeling

Set-Point

Set-point Linearization

Department

Gap 10

Set-Point: Example

Magnetic Suspension

Klaus Schmidt ECE 488 – Automatic Control Department

Set-point Linearization: Description

Explanation

- Compute a "small signal" approximation of the nonlinear system that is valid close to the set-point
- Introduce "Difference variables" (deviation from the set-point)

•
$$\Delta x = x - x_{SP}$$
, $\Delta y = y - y_{SP}$, $\Delta u = u - u_{SP}$, $\Delta w = w - w_{SP}$

Taylor Series Expansion

$$= A\,\Delta x + b\,\Delta u + o\,\Delta w$$

$$\Delta y \approx \underbrace{h(x_{SP}, u_{SP}) - y_{SP}}_{= 0} + \underbrace{\frac{\partial h}{\partial x}}_{c^{T}} \Delta x + \underbrace{\frac{\partial f}{\partial u}}_{d} |_{SP}}_{d} \Delta u = c^{T} \Delta x + d \Delta u$$

Klaus Schmidt ECE 488 – Automatic Control

Linear State Space Models

Nonlinear System Modeling

lodeling

Set-Point

Set-point Linearization

Department

Set-point Linearization: Example

Example Equations

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -g + \frac{K_M}{m} \frac{u^2}{(d - x_1)^2} - \frac{1}{m} w$$

$$v = x_1$$

Computation

Gap 11

Linear State Space Models Set-Point Nonlinear System Modeling Set-point Linearization: Example Computation Gap 12 Klaus Schmidt Department ECE 488 - Automatic Control Linear State Space Models Nonlinear System Modeling Set-Point Set-point Linearization Set-point Linearization: Illustration

Tangent Approximation

- Compute slope of nonlinear function in set-point
 - \rightarrow Replace nonlinear function by its tangent at set-point

<u>Illustration</u>

Gap 13

Set-point Linear	rization: Magnetic S	Suspension	Example		
Linearized Block	Diagram				
			Gap 14		
Klaus Schmidt ECE 488 – Automatic Control			Department		
Linear State Space Models	Nonlinear System Modeling	Set-Point	Set-point Linearization		
Linearization: S	ummary				
Task					
 Characterize nonlinear system behavior close to a set-point 					
Method					
 Write system representation in terms of "difference variables" 					
 Use first-order Taylor series approximation for nonlinearities 					

Result

- We get a linear system model for the nonlinear system
- Linear methods can be used for the nonlinear system close to the set-point
- Important restriction \rightarrow Linear model is only valid in the vicinity of the set-point