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Reminder

Previous Topics

Linear system modeling

LTI ODEs, block diagrams, transfer functions, state space models

Block diagram simplification

Nonlinear models and set-point linearization

This Week

Solution of the state equations

Analysis of transfer functions

Stability
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Solution of the State Equation: Basics

State Equations

ẋ = A x + b u, x(0) = x0

y = cT x + d u

Matrix Exponential

eA t =
∞∑
k=0

A t

k!
= I + A t +

A2 t2

2!
+

A3 t3

3!
+ · · ·

Laplace Transform of the Matrix Exponential

eA t c s (s I − A)−1
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Solution of the State Equation: Example

Computation
Gap 1
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Solution of the State Equation: Derivation

Laplace Transform of the State Equation

s X (s)− x(0) = A X (s) + b U(s)

Derivation
Gap 2
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Solution of the State Equation: Solution

Solution for the State

x(t) = eA t x0 +

∫ t

0
eA (t−τ) b u(τ)dτ

Solution for the Output

y(t) = cT x + d u = cT eA t x0 + cT

∫ t

0
eA (t−τ) b u(τ)dτ + d u

Parts of the Solution

Zero-input solution (u ≡ 0): y(t) = cT eA t x0

→ Solution of the state equation if no input is applied

Zero-state solution (x0 = 0): y(t) = cT
∫ t

0 eA (t−τ) b u(τ)dτ + d u
→ Solution of the state equation if the initial condition is zero
→ Zero-state solution corresponds to transfer function
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Solution of the State Equation: Transfer Function

Computation
Gap 3

Input/Output Behavior

Characterized by zero-state solution of state equation

Equivalent computation from transfer function

⇒ We study input/output behavior of LTI systems using transfer functions
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Rational Transfer Function: Basics

Transfer Function

G (s) =
b0 + b1s + · · ·+ bmsm

a0 + a1s + · · · ansn
=

B(s)

A(s)

Notation

Numerator degree: m

Denominator degree: n
n is called the order of the transfer function

relative degree: r = n −m

Classification

r < 0: Transfer function is improper

r > 0: Transfer function is strictly proper

r ≥ 0: Transfer function is proper
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Rational Transfer Function: Example

Computation
Gap 4
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Rational Transfer Function: Pole-Zero Representation

Rational Transfer Function

G (s) =
b0 + b1s + · · ·+ bmsm

a0 + a1s + · · · ansn
=

B(s)

A(s)

Fact

A polynomial with degree n has n zeros
→ The numerator of G (s) has m zeros z1, z2, . . . , zm ∈ C. These
zeros are called transfer function zeros
→ The denominator of G (s) has n zeros p1, p2, . . . , pn ∈ C. These
zeros are called transfer function poles

Pole-zero Representation of the Transfer Function

G (s) = K · (s − z1) · · · (s − zm)

(s − p1) · · · (s − pn)
with K =

bm

an
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Rational Transfer Function: Example

Computation
Gap 5
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Rational Transfer Function: Pole-Zero Diagram

Fact

If zj (pj) is a complex zero (pole) of G (s), then the conjugated
complex number z∗j (p∗j ) is also a zero (pole) of G (s)

Pole-Zero Diagram

Pole locations in the complex plane represented by crosses

Zero locations in the complex plane represented by circles

Gap 6
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BIBO Stability: Definition

Bounded Input Bounded Output (BIBO) Stability
A linear system with the transfer function G (s) is called bounded input

bounded output (BIBO) stable if for any bounded input u
(|u(t)| ≤ umax <∞), the output y is also bounded (|y(t)| ≤ ymax <∞).

⇒ In practice, we want systems to be BIBO stable!

Step Response Computation
Gap 7
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BIBO Stability: Computation

Step Response Computation
Gap 8

Conclusion

Step response for G (s) with distinct poles remains finite if all poles
of G (s) lie in the open left half complex plane (OLHP)

Step response for G (s) with distinct poles becomes infinite if at least
one pole of G (s) lies in the right half plane (RHP)
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BIBO Stability: Condition

General Stability Condition for Pole Locations

A linear system with the transfer function G (s) is BIBO stable
if and only if all poles of G are in the open left-half plane

Example
Gap 9
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BIBO Stability: Example

DC-Motor and Magnetic Suspension
Gap 10

Klaus Schmidt Department

ECE 488 – Automatic Control



Solution of the State Equation Rational Transfer Function Stability Stability Test

BIBO Stability: Step Response Simulation

DC-Motor
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⇒ Bounded Output

Magnetic Suspension
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⇒ Unbounded Output
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BIBO Stability: Relation to Impulse Response

Condition for Impulse Response

If g(t) c s G (s) is the impulse response of a linear system, then it is
BIBO stable if and only if g is absolutely integrable:

∫∞
0 |g(τ)|dτ <∞

Computation
Gap 11
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Stability Test: Routh-Hurwitz Method

Goal

Decide about stability of a given transfer function

G (s) =
B(s)

A(s)
=

B(s)

ansn + an−1sn−1 + · · ·+ a1s + a0

⇒ Determine if G (s) has poles in the right half plane

Routh-Hurwitz Method

Finds out how many zeros of a polynomial
ansn + an−1sn−1 + · · ·+ a1s + a0 are in the right half plane

Does not compute the zeros explicitly
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Stability Test: Routh-Array

Construction

sn an an−2 an−4 an−6 · · ·
sn−1 an−1 an−3 an−5 an−7 · · ·
sn−2 b1 b2 b3 · · · · · ·
sn−3 c1 c2 c3 · · · · · ·

...
...

...
...

... · · ·
s1 w1 0 0 0 · · ·
s0 z1 0 0 0 · · ·

Coefficients

b1 =
an−1an−2 − anan−3

an−1

b2 =
an−1an−4 − anan−5

an−1

b3 =
an−1an−6 − anan−7

an−1

c1 =
b1an−3 − an−1b2

b1

c2 =
b1an−5 − an−1b3

b1

c3 =
b1an−7 − an−1b4

b1

etc.
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Stability Test: Example

Computation
Gap 12
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Stability Test: Routh-Hurwitz Criterion

Statement

Consider the first column of the Routh Array and call Ndiff the number of
sign changes (+/- or -/+) of the coefficients in that column.

Then, Ndiff is the number of zeros of the polynomial
A(s) = ansn + an−1sn−1 + · · ·+ a1s + a0 in the ORHP. That is, if

Ndiff = 0, then A(s) has only zeros in the OLHP.

Special Cases

If one coefficient in the first column of the Routh Array is 0, then
either there are conjugated complex poles on the imaginary axis or
there is at least one zero of A(s) in the ORHP.
→ More details can be found in Ogata’s book, Chapter 5-7

Stability Test

Check the zeros of the denominator polynomial A(s) of G (s)
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Stability Test: Example

Computation
Gap 13
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Stability Test: Applicable Rules for Stability

Second-order Polynomial

A(s) = a2s2 + a1s + a0

⇒ a0, a1 and a2 must have
the same sign

Third-order Polynomial

A(s) = a3s3 + a2s2 + a1s + a0

⇒ a0, a2, a3 and
a1a2 − a0a3

a2
must have the same sign

Computation
Gap 14
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