Stability

ECE 488 – Automatic Control

Properties of LTI Systems

Assistant Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineeering – Çankaya University

Compulsory Course in Electronic and Communication Engineering Credits (3/0/3)

Course Webpage: http://ECE488.cankaya.edu.tr

Klaus Schmidt ECE 488 – Automatic Control

Solution of the State Equation

Rational Transfer Function

Stability

Stability Test

Department

Reminder

Previous Topics

- Linear system modeling
- LTI ODEs, block diagrams, transfer functions, state space models
- Block diagram simplification
- Nonlinear models and set-point linearization

This Week

- Solution of the state equations
- Analysis of transfer functions
- Stability

Solution of the State Equation

Department

Stability Test

Solution of the State Equation: Basics

State Equations

$$\dot{x} = Ax + bu, \quad x(0) = x_0$$

 $y = c^T x + du$

Matrix Exponential

 $e^{At} = \sum_{k=0}^{\infty} \frac{At}{k!} = I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \cdots$

Laplace Transform of the Matrix Exponential

$$e^{A t} \circ - \bullet (s I - A)^{-1}$$

Klaus Schmidt ECE 488 - Automatic Control

Solution of the State Equation

Rational Transfer Function

Stability

Solution of the State Equation: Example

Computation

Gap 1 Klaus Schmidt Department ECE 488 - Automatic Control

Solution of the State Equation: Derivation	
Laplace Transform of the State Equation	
s X(s) - x(0) = A X(s) + b U(s)	
Derivation	
	Gap 2
Klaus Schmidt	Department
ECE 488 – Automatic Control	Department

Solution of the State Equation

Rational Transfer Function

Stability

Stability Test

Solution of the State Equation: Solution

Solution for the State

$$x(t) = e^{At} x_0 + \int_0^t e^{A(t-\tau)} b u(\tau) d\tau$$

Solution for the Output

$$y(t) = c^{T} x + d u = c^{T} e^{A t} x_{0} + c^{T} \int_{0}^{t} e^{A(t-\tau)} b u(\tau) d\tau + d u$$

Parts of the Solution

- Zero-input solution $(u \equiv 0)$: $y(t) = c^T e^{At} x_0$
 - \rightarrow Solution of the state equation if no input is applied
- Zero-state solution ($x_0 = 0$): $y(t) = c^T \int_0^t e^{A(t-\tau)} b u(\tau) d\tau + d u$
 - \rightarrow Solution of the state equation if the initial condition is zero
- ightarrow Zero-state solution corresponds to transfer function

Klaus Schmidt ECE 488 – Automatic Control

Solution of the State Equation: Transfer Function

Computation

Gap 3

Stability Test

Input/Output Behavior

- Characterized by zero-state solution of state equation
- Equivalent computation from transfer function

⇒ We study input/output behavior of LTI systems using transfer functions Klaus Schmidt Department ECE 488 – Automatic Control

Solution of the State Equation

Rational Transfer Function

Stability

Rational Transfer Function: Basics

Transfer Function

$$G(s) = \frac{b_0 + b_1 s + \dots + b_m s^m}{a_0 + a_1 s + \dots + a_n s^n} = \frac{B(s)}{A(s)}$$

Notation

- Numerator degree: *m*
- Denominator degree: *n n* is called the *order* of the transfer function
- relative degree: r = n m

Classification

- r < 0: Transfer function is improper
- r > 0: Transfer function is strictly proper
- $r \ge 0$: Transfer function is proper

Rational Transfer Function: Example

Computation

Gap 4

Klaus Schmidt ECE 488 – Automatic Control

Solution of the State Equation

Rational Transfer Function

Stability

Stability Test

Department

Rational Transfer Function: Pole-Zero Representation

Rational Transfer Function

$$G(s) = \frac{b_0 + b_1 s + \dots + b_m s^m}{a_0 + a_1 s + \dots + a_n s^n} = \frac{B(s)}{A(s)}$$

Fact

• A polynomial with degree *n* has *n* zeros

 \rightarrow The numerator of G(s) has *m* zeros $z_1, z_2, \ldots, z_m \in \mathbb{C}$. These zeros are called transfer function *zeros*

 \rightarrow The denominator of G(s) has *n* zeros $p_1, p_2, \ldots, p_n \in \mathbb{C}$. These zeros are called transfer function *poles*

Pole-zero Representation of the Transfer Function

$$G(s) = K \cdot \frac{(s-z_1)\cdots(s-z_m)}{(s-p_1)\cdots(s-p_n)}$$
 with $K = \frac{b_m}{a_n}$

Klaus Schmidt ECE 488 – Automatic Control Department

Rational Transfer Function: Example

Computation

Gap 5

Klaus Schmidt ECE 488 – Automatic Control

Solution of the State Equation

Rational Transfer Function

Stability

Rational Transfer Function: Pole-Zero Diagram

Fact

If z_j (p_j) is a complex zero (pole) of G(s), then the conjugated complex number z_i^{*} (p_i^{*}) is also a zero (pole) of G(s)

Pole-Zero Diagram

- Pole locations in the complex plane represented by crosses
- Zero locations in the complex plane represented by circles

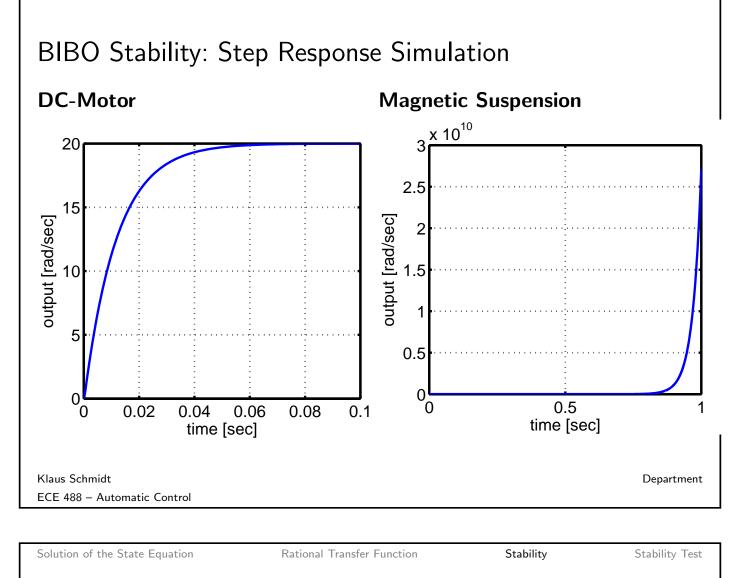
Gap 6

Department

Stability Test

BIBO Stability: Definition Bounded Input Bounded Output (BIBO) Stability A linear system with the transfer function G(s) is called bounded input bounded output (BIBO) stable if for any bounded input u $(|u(t)| \le u_{\max} < \infty)$, the output y is also bounded $(|y(t)| \le y_{\max} < \infty)$. \Rightarrow In practice, we want systems to be BIBO stable! **Step Response Computation** Gap 7 Klaus Schmidt Department ECE 488 – Automatic Control Stability Test Solution of the State Equation Rational Transfer Function Stability **BIBO Stability: Computation Step Response Computation** Gap 8 Conclusion • Step response for G(s) with distinct poles remains finite if all poles of G(s) lie in the open left half complex plane (OLHP) • Step response for G(s) with distinct poles becomes infinite if at least one pole of G(s) lies in the right half plane (RHP) Klaus Schmidt Department ECE 488 - Automatic Control

BIBO Stability: Condition General Stability Condition for Pole Locations A linear system with the transfer function G(s) is BIBO stable if and only if all poles of G are in the open left-half plane Example Gap 9 Klaus Schmidt Department ECE 488 - Automatic Control Solution of the State Equation Rational Transfer Function Stability Stability Test **BIBO Stability: Example DC-Motor and Magnetic Suspension** Gap 10 Klaus Schmidt Department ECE 488 – Automatic Control



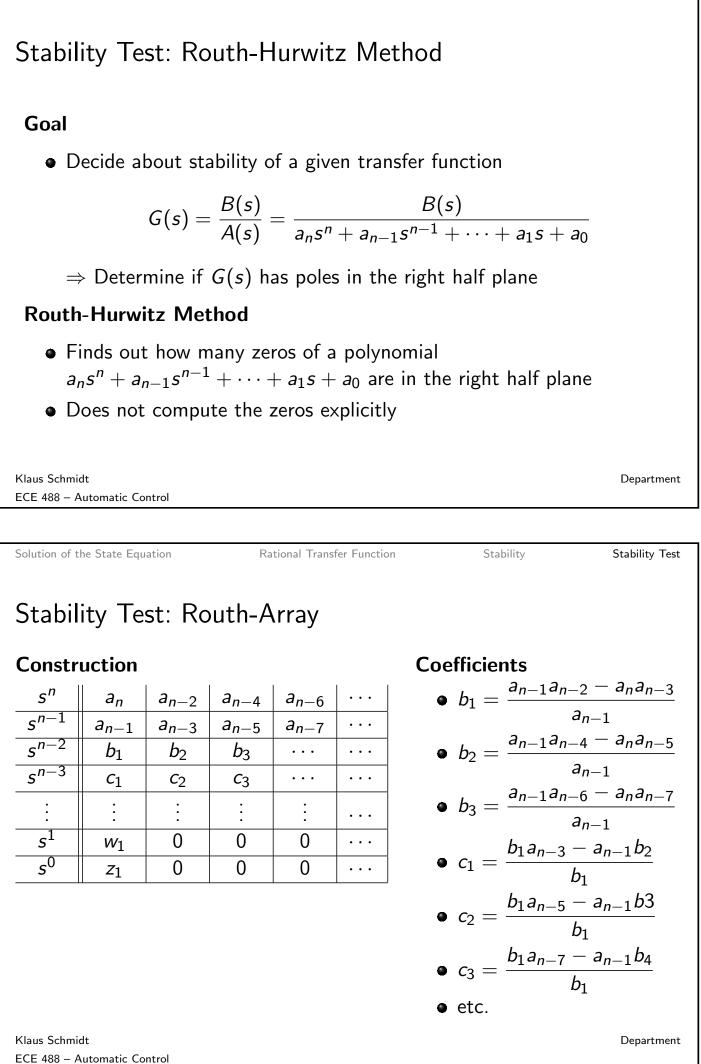
BIBO Stability: Relation to Impulse Response

Condition for Impulse Response

If $g(t) \circ G(s)$ is the impulse response of a linear system, then it is BIBO stable if and only if g is absolutely integrable: $\int_0^\infty |g(\tau)| d\tau < \infty$

Computation

Gap 11



Stability

Stability Test: Example

Computation

Gap 12

Department

Stability Test

Klaus Schmidt ECE 488 – Automatic Control

Solution of the State Equation

Rational Transfer Function

Stability

Stability Test: Routh-Hurwitz Criterion

Statement

Consider the first column of the Routh Array and call N_{diff} the number of sign changes (+/- or -/+) of the coefficients in that column. Then, N_{diff} is the number of zeros of the polynomial $A(s) = a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0$ in the ORHP. That is, if $N_{\text{diff}} = 0$, then A(s) has only zeros in the OLHP.

Special Cases

 If one coefficient in the first column of the Routh Array is 0, then either there are conjugated complex poles on the imaginary axis or there is at least one zero of A(s) in the ORHP.

ightarrow More details can be found in Ogata's book, Chapter 5-7

Stability Test

• Check the zeros of the denominator polynomial A(s) of G(s)Klaus Schmidt ECE 488 – Automatic Control

Department

Stability

Stability Test: Example

Computation

Gap 13

Klaus Schmidt ECE 488 – Automatic Control

Department

