Responses Properties of the Transient Response Dominant Poles Plant Zeros Performance Specifications

Reminder

Previous Topics

- Linear system modeling
- LTI ODEs, block diagrams, transfer functions, state space models
- Block diagram simplification
- Nonlinear models and set-point linearization
- Analysis of Transfer Functions and Stability

This Week

- Steady-state response and Transient Response
- Dominant Poles
- Transfer Function Zeros
- Performance Specifications

Responses: Separation

Transient Response

Response of a system to an input signal for a short time period after the application of the input signal: $y_{tr}(t)$

Steady-State Response

Long term response of a system to an input signal after the transient response vanishes: $y_{ss}(t)$

Separation

 $y(t) = y_{tr}(t) + y_{ss}(t)$

Remark

If stability of a control system is ensured, it is desired to shape the transient response of the control system

Klaus Schmidt ECE 488 – Automatic Control

Responses	Properties of the Transient Response	Dominant Poles	Plant Zeros	Performance Specifications
Respo	nses: Evample			
Nespo	nses. Example			
Compu	utation			
				Gap 1

Department

Department

Responses	Properties of the Transient Response	Dominant Poles	Plant Zeros	Performance Specifications
Respo	nses: Properties			
Prope	rties			
• If	G(s) is BIBO stable, then	the transient	response o	converges to zero
		$\lim y_{tr}(t) = 0$)	C C
a lf	C(s) is instable then the	$\rightarrow \infty$	onse diver	TAS
• 11		$m v_{(t)} = c$		363
6		$\sum_{i=1}^{ } y_{tr}(\iota) = 0$	×	
• St	eady state response for LI	I systems is o	determined	by the input
Examp	DIE			Gap 2
Klaus Schmid	t			Department
ECE 488 – Ai	utomatic Control			
Responses	Properties of the Transient Response	Dominant Poles	Plant Zeros	Performance Specifications
Respo	nses: Example			
Сотрі	utation			
				Gap 3
				Duration

Responses Properties of the Transient Response	Dominant Poles	Plant Zeros	Performance Specifications
Properties of the Transie	ent Response	e: Cases	
Real Pole $p_i \neq 0$	Illustra	ation	
$\frac{r_i}{s-p_i} \bullet \sigma(t)$			Gap 6
$\Rightarrow \lim_{t\to\infty} r_i e^{p_i t} \sigma(t) = \begin{cases} 0 & \text{if } p \\ \infty & \text{if } p \end{cases}$	$p_i < 0$ $p_i > 0$		
Comparison $p_i < p_j < 0$ and a_i	$\pi \approx a_j$		
$r_i e^{p_i t} \sigma(t) < r_j e^{p_j t} \sigma(t)$			
$\Rightarrow p_j$ dominates p_i Comparison p_i, p_j but $r_j << r_i$			
$r_j e^{p_j t} \sigma(t) < r_i e^{p_i t} \sigma(t)$			
$\Rightarrow p_i$ dominates p_j			
Klaus Schmidt ECE 488 – Automatic Control			Department

Properties of the Transient Response: Example

Properties of the Transient Response

Output Response

$$Y(s) = rac{A/a + B/b}{s} - rac{A/a}{s+a} - rac{B/b}{s+b}$$

Dominant Poles

Plant Zeros

Computation

Responses

Plant Zeros

Properties of the Transient Response: Cases

Properties

$$\lim_{t\to\infty} 2|r_i| e^{\operatorname{Re}(p_i) t} \cos(\operatorname{Im}(p_i) t + \angle(r_i)) = \begin{cases} 0 & \text{if } \operatorname{Re}(p_i) < 0 \\ \infty & \text{if } \operatorname{Re}(p_i) > 0 \end{cases}$$

 \Rightarrow exponential decay/increase similar to real pole

$$D = rac{-\operatorname{Re}(p_i)}{|p_i|}$$
 (damping)

Computation

Klaus Schmidt ECE 488 – Automatic Control

Responses

Properties of the Transient Response Dominant Poles

Dominant Poles: Relation

Conditions for Poles

- If there is an instable pole, it dominates all stable poles
- Usually, stable poles close to the imaginary axis (slow convergence) dominate stable poles far from the imaginary axis (fast convergence)
- Exceptions exist depending on the residues of the modes

Examples

Gap 10

Gap 9

Department

Responses Properties of the Transient Response Dominant Poles Plant Zeros Performance Specifications

Plant Zeros: Basics

Stable Plant

$$G(s) = \frac{(s-z_1)\cdots(s-z_m)}{(s-p_1)\cdots(s-p_n)}$$

Minimum-Phase Zero

• Zeros in the open left half plane: $\operatorname{Re}(z_j) < 0$

Non-minimum Phase Zero

• Zero in the right half plane: $\operatorname{Re}(z_j) > 0$

Example

Gap 12

Department

Responses Properties of the Transient Response Dominant Poles Plant Zeros Performance Specifications			
Plant Zeros: Minimum Phase Zeros and Dominant Poles			
Suppression of Dominant Poles			
• Assume a zero z_j is close to the dominant pole p_i : $z_j \approx p_i$			
$G(s) = rac{(s-z_j) ilde{B}(s)}{(s-p_i) ilde{A}(s)}$			
 Residue of mode p for step response 			
$r_i = \lim_{s o p_i} rac{G(s)(s-p_i)}{s} = \lim_{s o p_i} rac{(p_i-z_j) ilde{B}(p_i)(s-p_i)}{(s-p_i) ilde{A}(p_i)} pprox 0$			
\Rightarrow Dominant mode with pole p_i does not appear in the step response \Rightarrow If $z_j \approx p_i$, dominant modes can be suppressed and other modes become dominant			
Klaus Schmidt Department ECE 488 – Automatic Control			

Plant Zeros: Minimum Phase Zeros and Dominant Poles

Dominant Poles

Overshoot

Responses

• Dominant plant pole at p with $\operatorname{Re}(p) < 0$

Properties of the Transient Response

- Slow minimum phase plant zero z with $\operatorname{Re}(p) \ll \operatorname{Re}(z) \ll 0$
- \Rightarrow Overshoot of the step response

Plant Zeros

Properties of the Transient Response Dominant Poles Plant Zeros Performance Specifications Plant Zeros: Non-minimum Phase					
Statement	Example Simulation				
 k non-minimum phase zeros in G(s) ⇒ Step response intersects with time-axis k times ⇒ Undershoot whenever there are non-minimum phase zeros 	1.2 1 0.8 0.6 0.4				
Example $G(s) = \frac{5(s-1)}{(s+1)(1+30s)}$ $\Rightarrow \text{ One intersection with time axis}$	$ \begin{array}{c} $				
Klaus Schmidt ECE 488 – Automatic Control	Department				
Responses Properties of the Transient Response Do	ominant Poles Plant Zeros Performance Specifications				

Performance Specifications: Step Response Characteristics

Performance Specifications

- Describe desired behavior of a control system based on step response
- Define performance metrics that can be used in practice

Illustration

Gap 13

Responses F	Properties of the Transient Response	Dominant Poles	Plant Zeros	Performance Specifications
Performa	ance Specifications	: Step Res	ponse Cl	naracteristics
Steady S	tate Value			
 Outp 	out in steady state: y_{∞} =	$= \lim_{t \to \infty} y(t)$)	
Rise Time				
• Quantifies speed of response: first time t_r such that $y(t_r)=0.95y_\infty$				
(Percent) Overshoot				
• Quar	ntifies damping of respor	nse: $M_p = \max_{t \in \mathbb{R}}$	$\underset{\mathbb{R}}{\cong} \frac{y(t) - y_{\alpha}}{y_{\infty}}$	$\frac{\infty}{2}$
Peak Time				
 Time until first peak of overshoot is reached: t_p 				
Settling • Quar value	Time ntifies how long it takes e (for example 2% or 5%	until response b): <i>ts</i>	e stays arou	ind the final
Klaus Schmidt ECE 488 – Autom	atic Control			Department

Performance Specifications: Example

Properties of the Transient Response

First-order Lag

Responses

$$Y(s) = \frac{K}{1+s T} \frac{1}{s} \bullet \sigma(t) = \sigma(t)(1-e^{-t/T})$$

Dominant Poles

Plant Zeros

Computation

Gap 14

Dominant Poles

Plant Zeros

Performance Specifications

Properties of the Transient Response

Responses